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In this paper, an original set of transport equations for gas in porous media is developed.
As far as low pressure gases or very fine grained porous media are concerned, molecular
effects are likely to promote a dependency of the permeability on the pressure. These
phenomena are usually modelled using the Klinkenberg correction to the Darcy’s law.
The retained methodology brings a new interpretation of this particular problem. The
approach is based on a volume averaging scale-change methodology applied to the
Boltzman equation taking into account the presence of walls. It leads to a homogenized
kinetic equation describing the problem at the macroscale. A proper closure is then
applied following the strategy proposed by Levermore to obtain a hydrodynamic de-
scription. The hydrodynamic force applied by the porous structure on the gas exhibits
a strong non-linearity with the gas velocity. However, a linearization is proposed, re-
covering formally the classical Darcy’s law. The validity of the resulting permeability
tensor is finally discussed. As its dependency with pressure is concerned, it opens an
original interpretation of the nature of the Klinkenberg effect.

KEY WORDS: kinetic theory, gas flow, porous media, Klinkenberg effect, Levermore
closure hierarchy.

1. INTRODUCTION

Gas flows in porous media are well known to differ from liquid ones when the
compressibility effects become significant. In such conditions, the classical Darcy’s
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law needs to be modified to fit the experimental measures carried out either at low
pressures or in porous media featuring very small characteristic pore sizes. In his
work performed in 1941, Klinkenberg(1) was among the first ones to quantify this
phenomenon and to provide an empirical correction to Darcy’s law by proposing
a non local dependency of the permeability on the gas pressure:

Kg = Kl

(
1 + B

P

)
(1)

Here Kg and Kl denote the so called gas and liquid permeability, B is known as
the Klinkenberg factor (that must be linked to the gas properties) and P denotes
the mean pressure in the porous sample. The pressure dependency of the gas per-
meability was originally put forward by many authors in the field of petroleum or
natural gas engineering.(2) More recently, research has been carried out in various
configurations with different experimental apparatus providing a collection of val-
ues for the Klinkenberg’s coefficient B. To illustrate the interest of characterizing
the deviation from the Darcy’s law, one can mention the studies on air flows in the
unsaturated zone hydrology,(3) vapour in Geysers,(4) gas flows in aerogels,(5) ce-
ramic membranes(6) or mortars.(7) The physical interpretation of the Klinkenberg’s
effect appears to lie in some molecular aspects of gas transport when the Knudsen
number becomes close to unity: K n = λ/ lp ≈ 1. Here λ is the mean free path
of the molecules and lp is a characteristic dimension of the flow domain. In such
a configuration, the particle/wall collisions cease to be negligible compared to
the particle/particle ones. To investigate these situations, recent works on micro-
fluidics(8,9) have focused on getting rarefied gas flows in ducts. These accurate
experimental set-ups have provided precious tools to understand the flow transi-
tions in micro and nano structures and have supplied a comprehensive overview
of the rarefaction effects (Fig. 1) for Kn ranging from 0.001 to 3.

The mathematical modelling of rarefied gas flows in ducts has been a ma-
jor subject of interest for the last twenty years. In this field of fluid dynamics,
both traditional continuum approach and molecular dynamics based on the ki-
netic theory have been applied.(11) Getting away from low Knudsen flows to
explore rarefaction effects requires to change the classical model step by step. For
0.001 ≤ K n ≤ 0.1 numerous evidences show that the continuum point of view
can be kept provided that the stick boundary conditions are replaced with the

Fig. 1. Classification of flow regimes with the Knudsen number (from Ref. 10).
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slip ones (Refs. 12–14 or Mitsuya (1993)). In the transitional regime however
(0.1 ≤ K n ≤ 3), the Navier–Stokes equation (NSE) must be dropped in favour
of the classical Boltzmann equation (CBE) solved by Monte Carlo Direct Sim-
ulations (MCDS). This association is known to provide satisfactory results and
may also catch the hydrodynamic limit (with high computational costs however)
as well as the free molecular flows (K n ≥ 3).(15–18) For the latter regime however,
the deterministic molecular simulations appear to be the most relevant ones (see
for instance Ref. 19). In the field of general porous media, most of the models
attempting to account for the Klinkenberg effect begin with assuming that the
NSE using slip boundary is valid in the pores. Following this idea, Sketjne and
Auriault(20) obtained the Klinkenberg’s correction to Darcy’s law by using the
homogenization strategy of Bensoussan et al.(21) and Sanchez-Palencia(22) to the
Stokes flow problem. A bit later, Lasseux(23) realized comparable developments
by applying the Volume Averaging scale change theory of Whitaker(24) to the same
problem. For gases evolving in the transitional regime however, and following the
works performed for flows in ducts, it seems preferable to drop the NSE in favour
of the CBE to describe the evolution of particles inside the pores. Such an idea has
been already developed in the framework of the Dusty Gas Model by Mason and
Malinauskas.(25) Their model assumes that the behaviour of the gas particles can
be modelled in the medium by using a Boltzmann equation for a binary mixture
of light gas molecules and heavy steady particles representing the solid matrix.
In such an approach, the most challenging task to obtain a correct description of
the flow inside the porous medium consists in a suitable treatment of the solid/gas
interactions. De Socio et al.(26) proposed to consider that the collisions on walls
only modify the momentum of the gas particle in the direction normal to the wall.
Furthermore to simplify the form of the collision integral in CBE, the porous media
were modelled as a set of large square particles randomly distributed in the space.
An explicit expression of the macroscopic equation governing the flow is finally
obtained by using a Chapman Enskog expansion. More recently, De Socio and
Ianiro(27) have extended this approach to study free flows in plane channels over a
porous domain. The expression of the porous zone permeability obtained in this
study is inversely proportional to the local pressure. The aim of the present work is
to propose an original methodology to obtain the governing macroscopic equations
of gas flows in porous media when microscopic particles evolve in the transitional
regime thanks to the ideas and the concepts introduced by Levermore.(28) His
method consists in a straightforward generalization of what is traditionally done
to compute NSE from CBE. The remainder of the paper is organized as follows.
In the first part, we derive a general homogenized kinetic equation from CBE
for a set of particles trapped in a porous structure. This equation features in its
second member a special term modelling the action of the porous matrix on the
particles. In the second part we apply Levermore’s closure strategy to get a hydro-
dynamic picture of the gas flowing through the porous structure. This will lead
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us to generalize the Euler equations system for the ideal gas evolving in a “free”
space to the case of porous media. In the third part, we are demonstrating that
a proper linearization enables to formally recover the Klinkenberg permeability
tensor. Numerical values are then computed and compared to some ones measured
in literature.

2. PART I: A HOMOGENIZED KINETIC EQUATION FOR PARTICLES

TRAPPED IN A POROUS STRUCTURE

This entire section is devoted to the derivation of a new kinetic equation
modelling the behaviour of particles evolving in a porous medium. It first begins
with some considerations about the Boltzmann Equation (BE) and how to add a
source term modelling the action of the porous structure on the particles. This will
lead us to interpret BE in the framework of distributions then bringing to light
the inconvenience of its mathematical irregularity. To overcome this difficulty, we
propose the routine regularizing strategy consisting in making the convolution
product of BE with a particularly well chosen regular test function. Without any
further assumption however we shall see that this basic procedure is not capable
of yielding a convenient result. This problem will be nevertheless got round
by introducing the assumption of small deviations. We will then be in position
to feature a reasonable homogenized kinetic equation for a system of particles
trapped in a porous matrix.

2.1. A Boltzmann Equation Taking into Account the Action of Walls

The classical Boltzmann equation (CBE) has been studying for decades and
one can find a comprehensive description of its properties in Cercignani.(29) When
particles are moving in a porous structure such that the mean pore dimensions
become slightly greater than or comparable to the mean free path, the number of
wall/particle collisions ceases to negligible in front of that of particle/particle and
one has to add a wall/particle collision kernel B( f ). Without trying to give any
detailed description of the latter, we can modify CBE as follows:

∂

∂t
f + v · ∇x f = Q( f, f ) + B( f ) (2)

Here, the new source term B( f ), describing the action of the walls on the particles
velocity, is clearly linear with f and proportional to the Dirac distribution of the
surface separating pores and obstacles as established in detail in the Appendix A.1.
The linearity of the wall/particle collision operator with respect to the pdf f also
occurs when the Dusty Gas model is used to derive the wall/particle interaction
(Ref. 27, Eq. 7). But contrary to what is underlined here, the action of the wall is
then distributed everywhere in the volume. Mathematically, the specific location
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of the wall action on the particles can be nicely interpreted by considering Eq. (2)
in the sense of distributions. Since f (x, v, t) is null in the obstacles volume
(where it is obviously impossible to find any particle) and strictly positive in
the pores volume, a jump term is likely to appear when differentiating in the
sense of distribution. The accurate description of the action of the porous matrix
on particles requires to consider the way molecules are reflected by the walls.
Following Cercignani(29) and Sharipov(30) this can be achieved by introducing the
scattering kernels R(v′ → v, n). The way particles are interacting with the walls
is then described by a relation linking the molecules going to the wall to those
getting away from it (n(x) is oriented from wall to pre):

∀v, v · n(x) ≥ 0,

|v · n(x)| f (x, v, t) =
∫

v′ ·n(x)≤0

|v′ · n(x)|R(v′ → v, n) f (x, v′, t)dv′ (3)

There are three main scattering kernels modelling the wall/particle interactions:
the specular scattering kernel (RSK), the pure diffusive scattering kernel (DSK)
and the Maxwell scattering kernel (MSK) that is in fact a normalized weighted
sum of the others. They are respectively defined by:

RSK : RR(v′ → v, n) =̂ δ0(v′ − [v − (2v · n) n]), δ0 Dirac distribution at 0 (4)

DSK : RD(v′ → v, n) =̂ m2v · n

2π (kB TW )2
exp

(
− mv2

2kB TW

)

MSK : ∃α ∈ [0, 1] , RM (v′ → v, n) =̂ αRR(v′ → v, n) + (1 − α)RD

(
v′ → v, n

)

2.2. The Homogenization Procedure

The whole strategy for regularizing Eq. (2) is described in Appendix A.1
as well as the computations to achieve it. It basically consists in making the
convolution product of (2) with a regular test function. It leads to define a new pdf,
denoted by F(y, v, t), as the mean value of f (x, v, t) in a well chosen y-centred
neighbourhood, traditionally referred as the E.R.V. (Elementary Representative
Volume). F(y, v, t) appears as a new pdf, but defined at another volume scale. As
convolution an differentiation commute, the regularization of (2) leads quickly to
a new kinetic equation written for F and reading as:

∂

∂t
F (y, v, t) + v · ∇y F (y, v, t) = [(Q ( f, f ) + B ( f )) ψ] (y) (5)

Of course, the key point of the homogenization procedure remains that of express-
ing the second member of (5) as an operator acting on F(y, v, t). Such a problem
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is very similar to the closure problems appearing in the development of the volume
averaging scale change method for transport in porous media.(24) Nevertheless,
the closure procedure that is applied here is probably the simplest one can imagine
and is described in the Appendix A.1. It basically assumes that fluctuations of the
“microscopic pdf ” f (x, v, t) are not significant so that it can be approximated by
its mean value everywhere in the E.R.V. An easy sequence of calculations shows
then (see A.1):

Q( f, f ) ∗ ψ = Q(F, F)

ε(y)
=̂ 1

ε(y)

∫
n∈S

∫
v1

b (|(v − v1) · n|)(F∗
1 F∗ − F1 F)dn dv1

B( f ) ∗ ψ = W (F)

ε(y)
=̂ 1

ε (y)

⎡
⎣ ∫

v·n≥0

S (y, n) dn
∫

v′ ·n≤0

R(v′ → v, n)|v′ · n|F ′dv′

−
∫

v·n≤0

|v · n| S (y, n) Fdn

⎤
⎦ (6)

The E.R.V. functions ε(y) and S(y, n) are defined in A.1. They respectively denote
the porosity and the specific area per solid angle. We can split W(F) the same way
as what is usually done for Q(F, F), by discriminating between the loss and gain
terms:

W + (F) =
∫

v·n≥0

S(y, n)dn
∫

v′ ·n≤0

R(v′ → v, n)|v′ · n|F(y, v′, t) dv′ (7)

W − (F) =
∫

v·n≤0

|v · n| S (y, n) F (y, v, t) dn

W+(F) counts the particles that gain the velocity v inside the E.R.V thanks to a
collision with a wall while W−(F) counts the particles that lose the velocity v
inside the E.R.V. because of a collision with a wall. By injecting now (4) into
(6b), we can write down three particular homogenized scattering kernels (HSK)
as follows:

HRSK : WR (F) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
v·n≥0

S (y, n) |rn (v) · n| F (rn (v)) dn

−
∫

v·n≤0

S (y, n) |v · n| F (v) dn

rn (v) =̂ v − 2 (v · n) n
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HDSK : WD (F) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
v·n≥0

S (y, n) |v · n| gW (v)

⎛
⎝ ∫

v′ ·n≤0

∣∣v′ · n
∣∣ F

(
v′) dv′

⎞
⎠ dn

−
∫

v·n≤0

S (y, n) |v · n| F (v) dn

gW (v) =̂ m2

2π (kB Tw)2
exp

(
− mv2

2kB Tw

)

HMSK : ∃α ∈ [0, 1] , WM (F) = αWR (F) + (1 − α) WD (F) (8)

For any wall operator W, the new homogenized kinetic equation is then:

∂ F

∂t
+ v · ∇y F = Q (F, F)

ε (y)
+ W (F)

ε (y)
(9)

3. PART II: FROM KINETIC TO HYDRODYNAMICS

In this section we show how to exploit the kinetic Eq. (9) to obtain a hydro-
dynamic picture. Indeed, the transition from the statistical physics of gases to fluid
dynamics has quite a long history and several methods have already been pro-
posed to achieve it. Among them, the most popular are probably the ones derived
by Grad(31) and Chapman–Enskog. In spite of this, one can find in Levermore(28)

an alternative way to establish a hydrodynamic limit from a kinetic equation. This
section consists in a straightforward application of his closure strategy. The main
point of his theory rests on the demonstration of the equivalences between three
mathematical properties attached to the kinetic operator M(F). In the first part,
we recall the vocabulary and the main tools of Levermore’s strategy (LS). In the
second part, we show that all the operators considered in the last section (9) satisfy
the basic properties required by LS. The resulting hydrodynamic equations are
then be presented in the third part.

3.1. The Levermore Strategy

For the rest of this section, we assume that F is a positive function which
satisfies the following general kinetic equation:

∂

∂t
F (y, v, t) + v∇y F (y, v, t) = M (F) (y, v, t) (10)

The mathematical study of the kinetic operator M usually requires the introduction
of its kernel Ker(M) and entropy density η(F) defined as:

K er (M) = {φ (v) , ∀F ∈ D (M) , 〈M (F) φ〉 = 0} (11a)

∀F ∈ D (M) , 〈M (F) ∂Fη (F)〉 ≤ 0 (11b)
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Here D(M) is the domain of the operator M and the bracket notation stands for
the integration over v in R3. We shall say that a kinetic operator M satisfies
the Levermore equivalences (Ref. 28) whenever the following propositions are
mathematically equivalent:

(i) M (F) = 0
(i i) 〈M (F) ∂Fη (F)〉 = 0
(i i i) ∂Fη (F) ∈ K er (M)

(12)

The passage from the kinetic point of view to that of momentums is simply
achieved by multiplying Eq. (10) with a set of well chosen functions (which can
be either scalar, vector or tensor) only depending on the vector variable v. We
denote by T the classical vector transposition and suppose that k relevant functions
(forming the basis of a suited linear space) have been chosen for the hydrodynamic
description:

m (v) =̂ (m1 (v) , . . . , mk (v))T (13)

A set of fluid dynamic equations is drawn from (10) by computing:

∂

∂t
〈m (v) F〉 + ∇y 〈vm (v) F〉 = 〈m (v) M (F)〉 (14)

For the rest of the article, we shall adopt the notation 〈m (v) F〉 = ρ. The so called
closure problem is that of choosing the reasonable function F in order the second
and third terms of (14) to be expressed as functions of the moment vector ρ itself.
It is indeed a difficult methodological question to answer but Levermore(28) has
given a systematic way to solve it, provided that the kinetic operator M satisfies
the system of equivalences (12)

3.2. Application of the Levermore Strategy to the Homogenized

Operators

We turn now on the practical computation of the kernels (11a), entropy
densities (11b) and Levermore equivalences (12) for the operators (9) (up to ε(y))
using (8a) and (8c) and respectively denoted by MR and MM . We first demonstrate
in the Appendix A.2:

K er (MR) = {1, v2} (15a)

K er (MM ) = {1} (15b)

We also establish the following properties in the Appendix C:

ηR (F) = F ln (F) − F is an entropy density for MR (F) (16)

ηM (F) = F ln (F/gW ) − F + gW is an entropy density for MM (F)
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We recall here that those results have been obtained under the symmetry assump-
tion (A.19) for the function S(y, n). The entropy density (16b) is known as the
relative entropy of f to gW . We now finish the job by showing the last mathematical
results in the Appendix D:

MR (F) , K er (MR) , ηR (F) satisfy (12)
MM (F) , K er (MM ) , ηM (F) satisfy (12)

(17)

Having justified the Levermore equivalences, we are now in position to apply his
closure strategy. For a sake of simplicity we will now only work with the operator
MR . In practice, there are several basis functions (and corresponding admissible
linear spaces) that can be chosen to close the system (14). For the operator MR

and the associated entropy density, one can find in Levermore(28) a comprehensive
description of them. We only present here the so called Eulerian and Gaussian
linear spaces. They read respectively as:

E = {1, v, v2}
G = {1, v, v ⊗ v} (18)

where ⊗ denotes the usual tensor product. Let us focus here on the linear space
E. The closure of the system (14) requires to choose F as (Ref. 28):

F (y, v, t) = exp (a (y, t) + b (y, t) · v + c (y, t) v2) (19)

The constrains of the moments 〈m (v) F〉 = (ρ, ρu, ρ(u2 + 3kbT/m)) implies then:

F (y, v, t) = ρ (y, t)

(2πkB T (y, t)/m)3/2
exp

(
−m (v − u (y, t))2

2kB T (y, t)

)
(20)

We are sure that for the function (20) the fluid dynamic Eq. (14) consist in a closed
set of equations linking the usual moments (ρ, ρu, T). Besides the function F at
stake is the only one that minimizes the entropy per unit volume subjected to the
constraints of the moments.

3.3. The Euler Equations for a Gas in Porous Medium

The application of the closure procedure to MR yields the following general
equations:

∂

∂t

∫
v

F (v) + ∇y

∫
v

vF (v) =
〈

MR

ε (y)
(F)

〉
(21a)

∂

∂t

∫
v

vF (v) + ∇y

∫
v

v ⊗ vF (v) =
〈
v

MR

ε (y)
(F)

〉
(21b)
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∂

∂t

∫
v

v2

2
F (v) + ∇y

∫
v

v2v

2
F (v) =

〈
v2

2

MR

ε (y)
(F)

〉
(21c)

where F is chosen as (20). As the functions 1 and v2 are in Ker (MR), the second
members of (21a) and (21c) vanish. But as the Eulerian space E chosen for the
closure procedure is not equal to Ker (MR), then MR(F) is not null according to
the equivalences (12). As a consequence, since v is not in Ker (MR), the second
member of (21b) does not vanish. Nevertheless, if we make S(y, n) = 0, then MR

reduces to the homogenized colision Boltzmann operator (HCBO) and we recover
the Euler equations. We can see (21) as a natural continuous generalisation of them
for a gas evolving in a porous structure. The second member of (21b) describes
the action of the porous matrix on the gas dynamics. We naturally expect this force
to be dissipative and null when the gas is at rest. The final system of equations
reads as:

∂

∂t
ρ + ∇yρu = 0 (22a)

∂

∂t
ρu + ρu∇yu + ∇y P =

〈
vWR (F)

ε (y)

〉
(22b)

∂

∂t

(
1

2
ρu2 + 3

2

ρkB T

m

)
+ ∇y

(
1

2
ρu2u + 5

2

ρkB T

m
u

)
= 0 (22c)

where:
(ρu∇yu + ∇y P) =̂ ∇y

∫
v

v ⊗ vF (v) (22d)

In writing down this set of equations, one must keep in mind that all the relevant
“macroscopic values” (P, ρ, T, ρu) have been obtained as moments of the pdf F
that does not make any distinction between pores and obstacles. As detailed in the
Appendix A.1, F(y, v,t)dydvdt is the infinitesimal probability to find a particle
at time t with the velocity v anywhere in the E.R.V (whose volume dy can be seen
as the new infinetisimal volume at the macro-scale). Of course, we know in reality
that the obstacles volume is not allowed for the particles. The consequence is that
there is a need to make a clear distinction between what is traditionally named as
the “intrinsic values” and what will be referred in the following as the “porous
values.” For instance, in (22a), the bulk mass ρ that appears in the conservation
equation is not that of the gas, as well as the pressure P defined by (22d). The
intrinsic pressure and mass rate of the gas Pi and ρi are obtained straightforward
using:

Pi = P

ε (y)
, ρi = ρ

ε (y)
(23)
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As for the temperature T, it is indeed the same value, independently of the choice of
the “porous” or “intrinsic” point of views. (22a) is of course the mass conservation.
(22b) is the momentum equation for the gas in the porous media. At last (22c)
describes the energy conservation. It is very clear indeed that this last equation
would have been different if we had used HMSK rather than HRSK to model the
interaction between wall and particles.

4. PART III: STUDY OF THE HYDRODYNAMIC FORCE

This section is devoted to the detailed study of the force appearing in the
second member of (22b). In the first part, we establish the basic properties of
this hydrodynamic force. In particular, we show that it can be linearized. As
a consequence we will be in position, in the second part, to formally recover
Darcy’s law for gas transport in porous media. The attentive study of the so called
permeability tensor will bring to light a new interpretation of the Klinkenberg’s
effect. Some numerical values computed through the theoretical expression of the
kinetic Klinkenberg permeability will be compared to some ones that can be found
in the literature. A brief discussion will then follow.

4.1. Detailed Study of the Hydrodynamic Force

Let’s first recall the exact expression of the force (22b). Using the formula
(B.5) with F given by (20) leads to:

F (u) =̂
(

m

2πkB T

)3/2

ρ

∫
n

S (y, n)

2ε (y)
ndn

×
∫
v

|v · n| v · n

(
exp

(
−m (rn (v) − u)2

2kB T

)
− exp

(
−m (v − u)2

2kB T

))
dv

(24)

In these notations we have dropped the (y, t) dependence of the variables (ρ, ρu, T).
F(u) has the dimension of force per unit volume. It depends simultaneously on (ρ,
u, T) but the main difficulty remains its non linearity in u. Even if the Eq. (22b)
associated with (24) seems to be very far from Darcy’s law, an easy set of com-
putations will recover it. We demonstrate in the Appendix E the two following
results:

(∀u, F (−u) = −F (u)) , (25a)

(∀u, F (u) · u ≤ 0) (25b)
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(25a) is a property of symmetry that is in fine directly linked to the assumption
of the symmetry property of S(y, n). It implies F(0) = 0. This property appears
to be quite natural: physically, the porous matrix hampers the gas to flow in the
medium and the structure can be seen as a set of passive obstacles the molecules
have to go round to continue their paths. When the gas is at rest however, the
porous medium is a kind of special vessel in which the particles are evolving, and
except for the pressure, no other force is applied to the gas. Following the above
ideas, we mainly expect F(u) to be dissipative when u �= 0, which is assured by
(25b). We demonstrate in Appendix A.6 that:

∀u, ‖u‖ �
√

kB T

m
, F (u) ≈ −

⎡
⎣ 4√

6π

ρσ

ε (y) m
µ (T )

∫
n

S (y, n) n ⊗ ndn

⎤
⎦ : u

(26)
where : denotes the matrix/vector product and ⊗ the usual tensor product. Equa-
tion (26) expresses that F(u) has a reasonable linear approximation whenever the
velocity u is small compared to the thermal velocity associated to the temperature
T, which occurs genera lly in nano-metric and even micrometric porous struc-
tures. If we write now the Eq. (22b) by using all the relevant approximations and
notations, it becomes:

∂

∂t
ρu + ρu∇yu + ∇y P = −M : u (27)

where the matrix M is the one calculated in the Appendix F. Let’s consider a steady
regime for which the inertial effects are negligible. If the porosity ε(y) does not
depend on the space variable y, then (27) becomes u = −εM−1 : ∇y Pi and we
formally recover the Darcy’s law in for which the permeability tensor is given by
K = µ (T ) εM−1.

4.2. The Klinkenberg Effect

The last relation and (26) enable to compute the following permeability
tensor:

K = ε (y)

√
6π

4

ε (y) m

ρ (y) σ

⎡
⎣∫

n

S (y, n) n ⊗ ndn

⎤
⎦

−1

(28)

As we can see, (28) shows that permeability not only depends of the geometry
(because of the specific area per solid angle S(y, n) and the porosity ε(y)), but also
involves another characteristic length:

l=̂
√

6π

4

εm

ρσ
=

√
6π

4
λ (29)
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where λ is the mean free path of the particles. The linear dependency of K with
λ could be surprising since the classical theory only retains geometrical factors.
In practice however, λ can be linked to the intrinsic pressure and let some hope
to recover the Klinkenberg tensor. At low values, the ideal gas law is valid and K
reads then as:

K = ε

√
6π

4

kB T

Piσ

⎡
⎣∫

n

S (y, n) n ⊗ ndn

⎤
⎦

−1

(30)

This expression suggests that the permeability is directly proportional to the inverse
of the fluid pressure Pi . Nevertheless this is not what is commonly retained as the
correct form of the Klinkenberg correction. Generally the latter reads as (see (1)):

K = K∞

(
1 + B

Pi

)
I (31)

where I denotes the identity matrix. As we can see the permeability is rather an
affine than a linear function of the inverse pressure. Equation (31) suggests indeed
that the behaviour of the system is not the same depending on the value of the
intrinsic gas pressure. For low values 1 � B/Pi and we recover the expression
(28) for an isotropic porous media:

K∞ BI =
√

6π

4

kB T

Piσ

2ε

S (y)
I (32)

Nevertheless, when the pressure increases, the ideal gas law is not valid anymore
and we must use some correction. If we only retain the so called co-volume effects
in the Van Der Waals equation (i.e. the so called co-volume state equation), we
have:

mε

ρ
= m

ρi
= b

(
1 + kB T

bPi

)
(33)

where b denotes the co-volume of the particles. For an isotropic porous medium,
the expression of the permeability tensor reads as:

K =
√

6π

4

2bε

σ S (y)

(
1 + kB T

bPi

)
I (34)

and we recover the exact form of the Klinkenberg tensor in which the non local
dependency on the mean pressure has however turned into a local dependency on
the gas one. Moreover we obtain the explicit expressions for the constants involved
in (31).
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4.2.1. Numerical Aspects

The fist problem occurring with (34) is the fact that the so called “intrinsic”
or “liquid” permeability K∞ appearing in (31) is not supposed to change with the
nature of the gas evolving in the porous structure. This is not yielded by (34) in
so far as:

K∞ =
√

6π

4

2bε

σ S (y)
(35)

Yet, we are going to see that the variations of K∞ with the nature of the gas are not
that significant. As a first approximation, let’s consider b = 4/3π R3, σ = π R2

where R denotes here (and only here) the radius of the particles. Then, we have:

K∞ =
√

6π

2S (y)
ε

4

3
3

√
3b

4π
= C (y) 3

√
b (36)

A short list of values for b (in m3) and 3
√

b (in m) is presented in Fig. 2 for different
gases. The figures do not change a lot with the nature of the involved “molecules”
and, as a consequence, K∞ can appear as being practically independent of it.

4.2.2. Comparisons with the Experiments of Wu et al. (32)

In their article, Wu et al.(32) carried out a set of experimental data destined
to the indirect calculation of the Klinkenberg constant B introduced in (1). Let’s
briefly describe how they proceeded. A steady-state N2 gas flows is conducted
at ambient temperature in a porous cylindrical column (of length L) by keeping
a pressure difference (P0 − PL ) between the inlet (indexed by 0) and the outlet
(indexed by L). At the bottom of the column, the nitrogen mass flow rate qm is

 Gas co-volume b b cubic root
Air 6,04651E-29 3,92496E-10

CO2 7,09302E-29 4,13946E-10
N2 6,39535E-29 3,99903E-10
H2 4,40199E-29 3,53088E-10

H2O 5,04983E-29 3,69623E-10
NH3 6,19601E-29 3,95704E-10
He 3,88704E-29 3,38745E-10

CCl2F2 1,65781E-28 5,49344E-10

Fig. 2. Variation of co-volume cubic root with the nature of the gas.
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measured. The following quantity is then calculated:

Y = qmµL

β (P0 − PL )
, β =̂ Mg

RT
(37)

with Mg being the molecular mass of the nitrogen N2, R the universal gas constant,
T the temperature and µ the dynamical viscosity. Y is then related to K∞ and B
by using a model accounting for the mass flow rate in the porous sample. In their
computations, the authors came to the conclusion that:

Y ≈ BK∞ +
(

P0 + PL

2

)
K∞ (38)

Using the result (38), they plotted Y versus (P0 + PL )/2 thus determining the
constants B and K∞ by a linear regression. Their analysis was based on the fact
that the gas pressure P satisfies the following quadratic equation derived from the
steady mass conservation equation:

∂

∂x

(
(P + B)

∂ P

∂x

)
= 0 (39)

However, in this theory, using the system (22) with the approximation (26) and
the assumption of constant E.R.V. geometry inside the column leads to P = 0
where  denotes the classical Laplace operator. It is then easy to deduce that P
decreases linearly from inlet to outlet and to establish with a little computation
that Y = BK∞ is independent of the experimental pressures, unlikely to what has
been obtained by Wu et al. In spite of this, we defend here that the measures
reported by Wu et al. are only slowly varying with the mean pressure (Fig. 3: more
precisely, the relative variations of Y range from 1 to a maximum of 10 per cent).
As a consequence, Y = BK∞ can be regarded as a possible interpretation of their
experimental results with a pretty good agreement.

The theoretical expression (34) leads to calculate for N2 the following value
for B:

BN2 (T = 293 K) ≈ 64.4 × 106 Pa (40)

This differs by a factor 30 or 40 from the value obtained by Wu et al. that is
calculated to lie between 1 × 106 and 2 × 106 Pa, depending on the sample that is
used. Nevertheless, this can be explained by the fact that the equations modelling
the gas flow in the porous medium are not the same in this theory and the one
developed by Wu et al. In particular, in this paper, the Klinkenberg constant B is
supposed to be given by the very nature of the gas. It permits then to calculate K∞
by using Y = BK∞. In Wu et al. paper, both B and K∞ are unknown and (38) is
used to provide indirect experimental values.
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evolution of Y with the inlet pressure
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Fig. 3. Slow evolution of Y versus the inlet pressure, taken from Wu et al.

4.3. Discussion

4.3.1. Different Interpretations of the Klinkenberg Effect

One of the key points related to the study of gas flows in porous media lies
in the computation of the permeability tensor. If we consider the porous matrix
as a set of obstacles hampering the gas to flow, then, at the macroscopic scale, it
becomes correct to model the action of the porous on the fluid as a force F(u)
locally depending on the filtration velocity u and related to some functions defined
in the E.R.V. (see Ref. 24). The steady and non inertial momentum Eq. (22b) then
yields the following “implicit” Darcy’s law:

F (u) + ∇y P = 0 (41)

When F can be linearized, (41) reads then as:

u = −K

µ
: ∇y P (42)

And the general formalism of Darcy is recovered. The central problem of course
remains that of modelling F(u). Equivalently, in the linear regime, the matter has
turned into that of computing the permeability tensor K. Basically, the expression
of K depends on the primary “micro-scale” at stake. For high values of the mean
pore size (roughly corresponding to Kn < 0.01) it seems natural to compute K
from a homogenization procedure applied to NSE. The permeability appears thus
to depend only on the (often intricate) geometry of the E.R.V. and the interaction
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between fluid and walls. The question then collapses into that of finding the ac-
curate relation linking K with the geometry and the boundary conditions. In such
a formalism, the Klinkenberg effect appears to result from a slipping effect at
the walls. But of course, as the mean pore size decreases, the basic assumption
of the NSE validity breaks down. For gases, the alternative consists in obtaining
a continuum equation in the porous medium thanks to the application of some
hydrodynamic closure to CBE. The principal stake lies then in the computation
of the wall particle/interaction and its addition to CBE. The theory of the Dusty
Gas Model, though a little artificial, provided an original framework to achieve
it. However the computation of numerous ad hoc constants to make the E.R.V.
geometry appears in the statistics of the so called heavy particles has no rigor-
ous grounds. The framework chosen for this study seems to be more faithful to
the geometry than the Dusty Gas Model as demonstrated in the part I. In our
derivation however, the Klinkenberg effect has been recovered by introducing the
so called co-volume state equation. The co-volume effects impose a lower limit
to the permeability linked to the limit of the gas density for high pressures. One
of the problems between this interpretation and the one deriving from the NSE
homogenization is that they apparently differ whereas they potentially cover the
same flows regimes. As a consequence we believe here that some formal work
remains to be done in order to bridge them.

4.3.2. The Difficulty to Measure Permeability

The measures of the permeability are always obtained through the resolution
of some inverse problems involving an important part of modelling. More precisely,
most of the time, Darcy’s law is injected in the mass conservation as follows:

∂

∂t
(ε (y) ρi (T )) − ∇y

(
ε (y) ρi (T )

K

µ (T )
∇y (ε (y) Pi )

)
= 0 (43)

Depending on the assumptions on the form of K, on the validity of the ideal gas
law or on the fact that the y dependency can be dropped for a few geometrical
values (in K or ε), a new basic steady or unsteady equation is obtained which
can be different depending on the modelling. For example, in the region of the
Klinkenberg effect, Wu et al.(32) have obtained (39) while we have computed
(P = 0). Gross and Sherer(5) computed a more complex equation in a porous
aerogel sample linking a strain measured in the medium to some relaxation time
attached to an equation on the pressure derived from (43). Here again, a lot
of assumptions are made on the physical values involved in their experiment
without any real possibility to feed back the hypothesis to the obtained results. In
short, as the measure of K depends both on the experiment modelling (of course)
and on the assumptions made for the particular form of K, it is very difficult to pick
up results in the literature in order to verify the validity of our theory. The simplest
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we found was performed by Wu et al. and in spite of the apparent limitation
it conveys we believe that it tends to confirm the Klinkenberg interpretation we
proposed in this paper.

5. CONCLUSION

In spite of its pretty long history (at least since 1941) and the interest that has
been constantly attached to it, we believe that the Klinkenberg effect can still offer
some stimulating discussions in the framework of porous media modelling. In fact,
the numerous values that have been given to the Klinkenberg constant B (which are
rather ranging on a logarithmic scale,(20) the local or non local dependency on the
pressure retained to model the Klinkenberg effect, the different ways it has been
interpreted (by often invoking rarefaction and slipping effects, but also sometimes
a dependency on geometrical parameters (see Ref. 7), and the approaches that were
chosen to model it (homogenization procedures applied to NSE(20) or Chapman–
Enskog developments starting from the Dusty Gas Model(27) seem to prove that
the question is still not over. In such a situation indeed, the purpose of this article
was to bring new ideas in the debate. Actually, there are two major conclusions
that can be drawn from the developments we have led. The first one establishes
that the Klinkenberg constant only depends on the nature of the gas (by the means
of the particles co-volume b) and is directly proportional to the temperature T.
The second one brings to light a new interpretation of the Klinkenberg effect in
terms of local gas state equations. At low pressures, the ideal gas law is valid and
the bulk mass is then linear with the inverse of the pressure. At high pressures
however, the bulk mass tends to reach limit only depending on the co-volume and
we recover some “intrinsic” permeability. To obtain these results, we have mixed
up four different ingredients. The first one consisted in modifying the classical
Boltzmann equation by making appear a source term modelling the action of
the porous structure on the particles. In a second step, we applied a regularizing
procedure inspired by the Averaging Scale Method to the resulting equation thus
obtaining a so-called homogenized kinetic Boltzmann equation (HCBE). In a third
stage this equation was treated within the framework of the Levermore Strategy
(LS) for which it was necessary to compute the relevant kernels, entropy densities
and Levermore equivalences. At last, the use of the co-volume gas state equation
permits us to formally recover the Klinkenberg permeability. Unfortunately for
our theory, we were not able to find numerous experiments in the literature to
confirm or contradict our results. The works performed by Wu et al.(32) in spite of
a slight variation of the Klinkenberg constant B that is not predicted by our theory,
enable to think however that there are good chances for our model to be sensible.
To confirm the expression we have established for B:

B = kB T

b
(44)
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it would be of a major interest to carry out flow experiments with varying gas and
porous temperatures (in order to avoid thermal phenomena) so as to observe the
predicted dependency (44). Unfortunately, we were not able to find such systematic
data in the literature. Besides, from the theoretical point of view, it would be very
interesting to extend the derivation we have performed using the pure specular
scattering kernel (8a) for the Maxwellian one (8c). In practice, this will not change
the Klinkenberg factor B but will rather provide a correction on the “intrinsic”
permeability K∞. Another interesting continuations could also be found either in
the derivation of the hydrodynamic limit by closing the kinetic equation in the
Gaussian linear space G or in computing a BGK approximation of HBCO (see
Ref. 28). In these cases, we believe that the resulting fluid dynamic descriptions
will lead in getting the so-called Darcy Brinkman equations and will provided a
new framework for the study of thermal effects and diffusion in porous media. To
finish with the perspectives opened by this work, it seems pretty clear for us that
all the formalism we have developed in this paper could be extended to a mixture
of gases leading to the corresponding macroscopic equations for gas mixture in
porous media.

APPENDIX A: A REGULARIZED BOLTZMANN EQUATION

FOR PARTICLES EVOLVING IN A POROUS MEDIUM

The following developments are devoted to the getting and the regularization
of the Boltzmann equation presented in (2). The basic tool used to achieve the
last goal essentially consists in making the convolution product of (2) with some
regular test function. We mainly expect this operation to yield a new kinetic
equation whose handling is easier than the original one. We shall see that the
success of this procedure rests on a simplifying assumption concerning the local
behaviour of the pdf in the support of the test function. This hypothesis will be
referred as the small deviations assumption in the rest of the paper. The remainder
of this appendix is organized as follows. In the first part, we show how to model
the source term B(f). In the second part we regularize Eq. (2). This will lead
us to explicit the regularizing function and to compute the regularization of the
Boltzmann operator Q( f, f ) and the wall operator B(f).

A.1. Modelling the Action of the Walls on the Particles

in the Boltzmann Equation

To get the contribution of the walls to the evolution of f (x, v, t) we have
to count the infinitesimal number of particles dN that gain or lose the velocity v
in the volume dx during dt because of a collision with a wall. By definition, this
infinitesimal number is equal to B( f )dxdvdt . Let n(x) be the normal to the wall
(denoted by �) at x and pointing from obstacles to pores. dσ (x) = δ(x ∈ �)dx
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(where δ denotes the Dirac symbol) is the infinitesimal surface of obstacles within
dx. If v · n(x) ≤ 0, then particles having the velocity v are moving to the wall and
they lose their velocities because of a collision with the wall between t and t + dt .
B(f) acts then as a sink term and an elementary count of the lost of these molecules
leads to:

d N =̂ B( f )dxdvdt = − f (x, v, t) dv |v · n (x)| dtds

= − f (x, v, t) dv |v · n (x)| dtδ (x ∈ �) dx (A.1)

If v · n (x) ≥ 0, then particles are going away from the wall, meaning that they
have just taken a collision that has made them gain the velocity v. B(f) acts then
as a source term and the same elementary count of the molecules leads to:

d N =̂ B( f )dxdvdt = f (x, v, t) dv |v · n (x)| dtds

= f (x, v, t) dv |v · n (x)| dtδ (x ∈ �) dx (A.2)

So, whatever is the sign of v · n(x), the new Boltzmann equation reads as:

∂ f

∂t
+ v · ∇x f = Q ( f, f ) + f (x, v, t) v · n (x) δ (x ∈ �) (A.3)

A.2. The Regularization Function

The most important problem with (A.3) is the presence of the Dirac term
in its right hand side. To get round this difficulty and handle (A.3) more easily,
a mathematical simplification procedure consists in regularizing it by making
its convolution product with a regular test function (meaning of class C∞ with
compact support). This function however has to be chosen while keeping in mind
that the values obtained after the convolution product must have a reasonable
physical meaning. This can be achieved by considering the E.R.V. (elementary
representative volume) function ψ . Its support (referred as the E.R.V.) strictly
contains the ball of radius R which volume is denoted VR . We assume besides that
there is some tiny parameter ε > 0 satisfying:

∀x, ‖x‖ ≥ R + ε, ψ (x) = 0 (A.4)

We also suppose that ψ is of class C∞, positive and constant in the ball of radius
R such that: ∫

‖x‖≤R

ψ (x) dx = 1 (A.5)

To finish with, we suppose that there exists some η > 0 which can be chosen as
close as 0 as we want such that for any function of interest g considered in this
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article we have:∫
R3

g (x) ψ (x) =
∫

‖x‖≤R

g (x) ψ (x) + δ (g) , |δ (g)| ≤ η (A.6)

If f (x, v,t)dxdv is the probability to find a particle between x and x + dx with
a velocity lying between v and v + dv, then ( f ∗ψ)(y)dvVR is the probability to
find a particle with a velocity lying between v and v + dv anywhere inside the ball
of radius R which centre is y and which will be denoted by B(y, R) till the end of
the study. We are now ready to turn to the regularizing procedure.

A.3. The Small Deviations Assumption

The main point of the regularization problem consists in computing some
partial differential equation for the regular function F(y) =̂ [ f ∗ψ](y) where f
denotes the single particle probability density function extended in the whole
space R3 and regarded as a distribution. Of course, we now that its value is 0 in
the obstacle volume � and strictly positive in the pore volume �. As convolution
and differentiation commute, we can compute the convolution product of the left
hand side of (2) conveniently:

(
∂ f

∂t
+ v · ∇x f

)
∗ψ = ∂ F

∂t
+ v · ∇y F (A.7)

But to write an equation for F, we have to express the convolution product of
the right hand side of (3) in term of F. To achieve that, let us now introduce the
assumption of the small deviations. It consists in writing:

{∀x ∈ B (y, R) , f (x, v, t) = χ (x) [g (v, t) + h (x, v, t)]
∀x ∈ B (y, R) , h (x, v, t) � g (v, t)

(A.8)

Here χ (x) is the characteristic function of �. Basically it is believed that the
homogenization procedure will be all the more relevant that the pdf f we are
working with does not have significant variations inside the E.R.V. This is indeed
a routine assumption of any up-scaling method and it is justified by the fact that
we are only interested in studying the slow variations of f. This is going to help
us for the homogenization of the left hand side of (A.3). Let us begin with the
operator Q( f, f ). We quickly recall here that the latter reads as:

Q ( f, f ) =
∫
n

∫
v1

b (|(v1 − v) · n|)

× [
f
(
v∗

1, x, t
)

f ∗ (v∗, x, t) − f (v1, x, t) f (v, x, t)
]

(A.9)
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where the star notation refers to velocities after binary collisions. Since f = 0 in
�, the particular form of ψ leads to compute:

Q ( f, f ) ∗ ψ = 1

VR

∫
�∩B(y,R)

Q ( f, f ) dx (A.10)

We naturally defines the porosity of the E.R.V. as being:

ε (y) =̂ V (� ∩ B (y, R))

VR
(A.11)

Using (A.8), (A.10) leads quickly to:

Q ( f, f ) ∗ ψ = Q (F, F)

ε (y)
(A.12)

Let us now turn to the homogenization of the Dirac term. The small deviation
assumptions leads to:

[v · n (x) f (x, v, t) δ (x ∈ �)] ∗ψ = 1

VR

∫
�∩B(y,R)

g (v) v · n (x) dσ (x) (A.13)

The domain of integration � ∩ B (y, R) is now divided in two complementary sets
�+ and �−:

� ∩ B(y, R) = [{x ∈ � ∩ B(y, R), v · n(x) ≤ 0} = �−]

∪[{x ∈ � ∩ B(y, R), v · n(x) > 0} = �+] (A.14)

We exploit this separation to get:

1

VR

⎡
⎢⎣

∫
�∩B(y,R)

g (v) v · n (x) dσ (x)

⎤
⎥⎦

= 1

VR

⎡
⎣ ∫

�−

g (v) v · n (x) dσ (x) +
∫
�+

g (v) v · n (x) dσ (x)

⎤
⎦ (A.15)

But using now the particle/wall collision models (4) we compute easily

1

VR

⎡
⎣ ∫

�+

g (v) v · n (x) dσ (x)

⎤
⎦

= − 1

VR

⎡
⎣ ∫

�+

dσ (x)
∫

v′ ·n≤0

g(v′, t)R(v′ → v, x, n)v′ · n (x) dv′

⎤
⎦ (A.16)



A New Momentum Equation for Gas Flow in Porous Media 377

The equality (A.15) can now be rewritten:

1

VR

⎡
⎢⎣

∫
�∩B(y,R)

g (v) v · n (x) dσ (x)

⎤
⎥⎦

= 1

VR

⎡
⎣ ∫

�−

g (v) v · n (x) dσ (x)

−
∫
�+

dσ (x)
∫

v′.n≤0

g
(
v′) R(v′ → v)v′ · n (x) dv′

⎤
⎦

By ordering the integration in the last expression we get:

1

VR

⎡
⎢⎣

∫
�∩B(y,R)

g (v) v · n (x) dσ (x)

⎤
⎥⎦

= 1

VR

⎡
⎣g (v) v ·

∫
�−

n (x) dσ (x) −
∫
�+

dσ (x) n (x)

·
∫

v′.n≤0

g(v′)R(v′ → v)v′dv′

⎤
⎦

Let’s define the function S(y, n) by:

∫
�∩B(y,R)

dσ (x)

VR
n (x) =̂

∫
n

S (y, n) ndn (A.17)

Then using (A.10), (A.13) becomes:

1

VR

∫
�∩B(y,R)

g (v) v · n (x) dσ (x) =
∫

v·n≥0

S (y, n) dn
∫

v′.n≤0

F ′ (y)

ε (y)
R(v′ → v, n)|v′ · n|dv′

−
∫

v·n≤0

|v · n| S (y, n)
F (y)

ε (y)
dn
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A.3. Physical Interpretation

The definition (A.17) introduces a new function S(y, n). As for the porosity
ε(y), this function is defined inside the E.R.V. Its physical dimension is that of a
surface per volume and solid angle. More precisely, the quantity:

S (y) =̂
∫
n

S (y, n) dn (A.18)

is the total amount of surface of obstacles inside the E.R.V. divided by its volume
VR . Following the usual denotation used in porous media, this value will be referred
as the specific area. For the rest of the article, we assume that the function S(y, n)
has the following property of symmetry:

∀n, S (y,−n) = S (y, n) (A.19)

It means that for a given direction n, there is inside the E.R.V. as much area which
normal points in the direction n as area which normal points in the direction –n.
This includes of course the isotropic case, but also numerous other symmetrical
distributions of obstacles in the E.R.V. The interest of this assumption will be
discussed a bit further.

APPENDIX B: COMPUTING LOCALLY CONSERVED QUANTITIES

FOR MR AND MM

In this part we compute the set of all conserved quantities for both MR and
MM . The demonstration begins with the following lemma:

Lemma 1.

K er (MR) ⊂ K er (Q) ∩ K er (WR) and K er (MM ) ⊂ K er (Q) ∩ K er (WM )
(B.1)

These two results are mainly based on the linearity of WR(F) and WM (F) with
respect to their arguments as well as the bi-linearity of Q(F, F). We shall make
the calculations for the operator MR , but they work identically for MM . So let φ

be in Ker(MR). We have ∀F, 〈MR (F) φ〉 = 0. By a consequence we can write
∀G,∀λ > 0, 〈MR ((1 + λ) G) φ〉 = 0. Now we expand the term MR((1 + λ)G). It
is easy to check that:

MR ((1 + λ) G) =̂ Q ((1 + λ) G, (1 + λ) G) + WR ((1 + λ) G)

= (1 + λ)2 Q (G, G) + (1 + λ) WR (G) (B.2)
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By ordering terms with the decreasing powers of λ we get:

MR ((1 + λ) G) = λ2 [Q (G, G)] + λ [2Q (G, G) + WR (G)]

+ [WR (G) + Q (G, G)] (B.3)

Using now relations (B.2) and (B.3), we compute:

∀G, ∀λ > 0 λ2 〈[ Q (G, G)] φ〉 + λ 〈[2Q (G, G) + WR (G)] φ〉
+ 〈[ WR (G) + Q (G, G)] φ〉 = 0 (B.4)

As the polynomial is null, so are every coefficients, and we prove the Lemma 1.
It is well known that K er (Q) = 〈

1, v, v2
〉

(see for instance Ref. 28) and we only
have to find which functions among 1, v, v2 are either in Ker(WR) or in Ker(WM ).
Let’s begin with the operator WR . We first show the following result:

Lemma 2. (
1, v2

) ∈ K er (WR) and v /∈ K er (WR)

When the symmetry assumption (A.19) holds we have clearly:

〈WR (F) φ〉 =
∫
n

S (y, n)

2

⎡
⎣∫

v

|v · n| [F (rn (v)) − F (v)] φ (v) dv

⎤
⎦ dn (B.5)

It is possible to make a change of variable v → rn (v) =̂ v − 2 (v · n) n in the
inner integral (B.5) and rewrite it as:

〈WR (F) φ〉 =
∫
n

S (y, n)

2

⎡
⎣∫

v

|rn (v) · n| [F (v) − F (rn (v))] φ (rn (v)) dv

⎤
⎦ dn

(B.6)
By making the half sum of (B.5) and (B.6) we obtain:

〈WR (F) φ〉

=
∫
n

S (y, n)

4

⎡
⎣∫

v

|v · n| [F (rn (v)) − F (v)] [φ (v) − φ (rn (v))] dv

⎤
⎦ dn

(B.7)

It is then easy to check that for φ (u) = 1, φ (u) = u2 we have ∀F, 〈WR (F) φ〉 = 0
whereas this is obviously not true forφ (u) = u. We have then proved Lemma 2.
Now let’s characterize the kernel of MM operator. More precisely, let’s argue
the:
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Lemma 3.

1 ∈ K er (WR) and v, v2 /∈ K er (WR)

The demonstration is in fact a little more difficult than the former one but it is
basically grounded on the same techniques. We recall first that for 1 > α > 0 we
have denoted:

WM (F) = αWR (F) + (1 − α) WD (F) (B.8)

where WR is the purely specular scattering kernel and WD the purely diffusive
scattering kernel. Let’s recall the form of the operator WD:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WD (F) =
∫

v·n≥0

S (y, n)

⎛
⎝ ∫

v′.n≤0

RD(v′ → v)|v′ · n|F(v′)dv′

⎞
⎠ dn

−
∫

v·n≤0

S (y, n) |v · n| F (v) dn

RD

(
v′ → v

) = H (v · n)
m2v · n

2π (kB Tw)2
exp

(
− mv2

2kB Tw

)
=̂H (v · n) |v · n| gW (v)

(B.9)
In these notations, H(x) is referring to the Heavyside function. To simplify the
handling of the latter expression, let’s define:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W +
D (F) =̂

∫
v·n≥0

S (y, n) |v · n| gW (v)

⎛
⎝ ∫

v′ ·n≤0

|v′ · n|F(v′)dv′

⎞
⎠ dn.

W −
D (F) =̂

∫
v·n≤0

S (y, n) |v · n| F (v) dn

(B.10)

We recognize the so called incoming and outgoing contributions. It is worth noting
that:

∫
v′

H (v′ · n)|v′ · n|gW (v′) = 1 so W −
D (F) can be rewritten as:

W −
D (F) =

∫
v′

∫
v·n≤0

S(y, n)|v · n|F(v)H (v′ · n)|v′ · n|gW (v′)dv′dn (B.11)

If one multiplies W −
D (F) by a test function φ and integrate for v ∈ R3 he gets:

〈
W −

D (F) φ
〉 =

∫
v

dv
∫
v′

dv′
∫
n

dnS (y, n) H (−v · n) |v · n|

× F (v) φ (v) H
(
v′ · n

) ∣∣v′ · n
∣∣ gw

(
v′) (B.12)
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Doing the same thing with W +
D (F) one has:

〈W +
D (F)φ〉 =

∫
v

dv
∫
v′

dv′
∫
n

dnS(y, n)F(v)

× H (−v · n)|v · n|φ(v′)H (v′ · n)|v′ · n|gw(v′) (B.13)

If we make the difference between the last two terms, we obtain:

〈WD(F)φ〉 =
∫
v

dv
∫
v′

dv′
∫
n

dnS(y, n)H (v · n)|v · n|gw(v)

× H (−v′ · n)|v′ · n|F(v′)(φ(v) − φ(v′)) (B.14)

It immediately appears now that φ (u) = 1 belongs to the kernel of WD . As it
also belongs to the kernel of WR , it is then in the kernel of WM . Nevertheless,
since v and v′ are totally independent variables, there are no special reasons why
〈WD (F) φ〉 should be null for other general forms of φ. So neither φ (u) = u
nor φ (u) = u2 are in the kernel of WD and by consequence in Ker(WM ). The
physical meaning of this result is indeed quite obvious: a diffusive wall re-emits
particles at a given temperature, which signifies that their energies differ before
and after the collision. So except for the case when the gas and the wall have
the same temperatures, the mean energy of the particles is not conserved any
more. In order to simplify further studies of the Maxwellian scattering kernel, we
denote:

χ (v, v′) =
∫
n

S(y, n)H (v · n)|v · n|H (−v′ · n)|v′ · n|dn (B.15)

With assumption (A.19), one can easily check that

∀(v, v′), χ (v, v′) = χ (v′, v). (B.16)

APPENDIX C: COMPUTING ENTROPY DENSITIES FOR MR AND MM

In this section, we compute the entropy densities for the operators MR and
MM . We first show the following result:

Proposition 1. ηR(F) = F ln(F) − F is an entropy density for MR(F).

We know that ηR (F) is already an entropy density for Q (F, F) (see Ref. 28).
So, if such is the case for WR(F), the proposition is demonstrated. We recall here
that the symmetry hypothesis (A.19) has been assumed. By applying now formula
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(B.7) with φ (u) = ln (F (u)), we compute:

〈WR (F) ∂FηR (F)〉

=
∫
n

S (y, n)

4

⎡
⎣∫

v

|v · n| [F (rn (v)) − F (v)] [ln F (v) − ln F (rn (v))] dv

⎤
⎦ dn

(C.1)

And the result is proved since ∀ (x, y) ∈ R+∗, (x − y) (ln (y) − ln (x)) ≤ 0. Let’s
return to the notations (B.9). Then we can prove the following result:

Proposition 2. ηM (F) = F ln (F/gW ) − F + gW is an entropy density for
MM (F).

As for the study of MM conserved maps, the demonstration will be a bit more
difficult for this operator than for MR . Our first task begins with demonstrating
that ηM (F) is an entropy density for Q(F, F). Using the classical star notations,
we recall here (Ref. 28):

〈Q(F, F)φ〉 = 1

4

∫
v

∫
v1

∫
n

b(|(v1 − v) · n|)[F∗
1 F∗ − F1 F]

× (φ1 + φ − φ∗
1 − φ∗)dv1dndv (C.2)

For gW defined by (B.9), one can verify the following equality:

∀(v, v1), g(v∗
1)gw(v∗) = gw(v1)gw(v) (C.3)

The star notations stand for velocities after conservative binary collisions. Now if
we apply formula (C.2) with φ = ∂FηM (F) = ln(F/gW ), we obtain:

〈Q(F, F)∂FηM (F)〉 = 1

4

∫
v

∫
v1

∫
n

b(|(v1 − v) · n|)[F∗
1 F∗ − F1 F]

× (ln(F1 F) − ln(F∗
1 F∗))dv1dndv (C.4)

So we have quickly 〈Q (F, F) ∂FηM (F)〉 ≤ 0 and the first step has been taken.
Now let’s prove that ηM (F) is also an entropy density for WR (F). Here again,
the function gW satisfies gw (v) = gw (rn (v)); so if we apply (B.7) with φ =
∂FηM (F) = ln (F/gW ) we obtain equality (C.1) and ηM (F) is an entropy density
for WR (F). It remains then the most difficult to show, that ηM (F) is an entropy
density for WD (F). Using (B.14) with notation (B.15), we can write for any test
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function φ:

〈WD(F)φ〉 =
∫
v

dv
∫
v′

dv′gw(v)F(v′)χ (v, v′)(φ(v) − φ(v′)) (C.5)

Now, if we compute (C.5) for φ = ∂FηM (F) = ln(F/gW ) we get:

〈WD(F)∂FηM (F)〉 =
∫
v

dv
∫
v′

dv′gw(v)F(v′)χ (v, v′)
(

ln

(
gw (v′) F (v)

gw (v) F (v′)

))

(C.6)
Using now the symmetry of the function χ (v, v′) (B.16), it clearly appears:∫

v

dv
∫
v′

dv′gw(v′)F(v)χ (v′, v) =
∫
v

dv
∫
v′

dv′gw(v)F(v′)χ (v′, v) = M (C.7)

Hence it is obvious that:

〈WD (F) ∂FηD (F)〉 = M

∫
v

dv
∫
v′

dv′ gw (v) F (v′) χ (v, v′)
M

×
(

ln

(
gw (v′) F (v) χ (v, v′) M

gw (v) F (v′) χ (v, v′) M

))
(C.8)

Let’s note then:

p
(
v, v′) = gw (v) F (v′) χ (v, v′)

M
; q

(
v, v′) = gw (v′) F (v) χ (v, v′)

M
(C.9)

So p(v, v′) and q(v, v′) are both normalized probability density functions on the
spaceV × V′. It is possible to calculate their Kullback Information defined by:

K (p : q) =
∫
v

dv
∫
v′

dv′ p
(
v, v′) (ln

(
p (v, v′)
q (v, v′)

))
(C.10)

But it is a well known result that K(p:q) is always positive so:

〈WD (F) ∂FηM (F)〉 = −M

∫
v

dv
∫
v′

dv′ p(v, v′)
(

ln

(
p (v, v′)
q (v, v′)

))

= −M K (p : q) ≤ 0 (C.11)

APPENDIX D: ASSERTING LEVERMORE’S EQUIVALENCES

After the preliminary results shown in Appendices B and C, we are now in
position of proving the system of Levermore’s equivalences for the operators MR

and MM . First we show:
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Proposition 3. MR satisfies (12) for K er (MR) = 〈1, v2〉 and ηR(F) = F ln
(F) − F

(1) First it is trivial to demonstrate that

MR (F) = 0 ⇒ 〈MR (F) ∂FηR (F)〉 = 0 (D.1)

(2) Assume that 〈MR (F) ∂FηR (F)〉 = 0. As ηR (F) is an entropy density
both for Q (F, F) and WR (F) (see Appendix C), it implies:{

〈Q (F, F) ∂FηR (F)〉 = 0

〈WR (F) ∂FηR (F)〉 = 0
(D.2)

From (2.1) we draw (see Ref. 28): ∃ (a, b, c) , ∂FηR (F) = a + b · v + cv2.
Now using (2.2), and (C.2) we have:

〈WR (F) ∂FηR (F)〉 =
∫
n

S (y, n)

4

×
⎡
⎣∫

v

|v · n| [F (rn (v)) − F (v)] [ln F (v) − ln F (rn (v))] dv

⎤
⎦ dn = 0

(D.3)

As the function to integrate is always negative, the integral is null
if and only if the latter is always null. We get from these results:
∀v, n ln F (v) − ln F (rn (v)) = 0 = b · (v − rn (v)), which implies b =
0 and then 〈MR (F) ∂FηR (F)〉 = 0 ⇒ ∂FηR (F) ∈ K er (MR).

(3) Assume now that ∂FηR (F) ∈ K er (MR). Then we have F (v) =
A exp

(−mv2/2kB T
)
. It is well known that Q (F, F) vanishes for such

F. As v → rn (v) is isometric for each n, it is easy to verify that MR (F)
also vanishes for such F. So ∂FηR (F) ∈ K er (MR) ⇒ MR (F) = 0 and
the loop is achieved. In this demonstration indeed, the key point rests on
the fact that ηR (F) is an entropy density both for Q (F, F) and WR (F).
By using the same kind of demonstration, we can prove Levermore’s
equivalences for MM :

Proposition 4. MM satisfies the system (12) for K er (MM ) = 〈1〉 and for the
entropy density ηM (F) = F ln (F/gW ) − F + gW

As in Proposition 1, the key point of the demonstration will be the fact that
ηD (F) is an entropy density for Q (F, F), WR (F) and WD (F).
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APPENDIX E: SHOWING THAT F (U) IS ODD AND DISSIPATIVE

In this Appendix, we demonstrate the following properties:

Proposition 5. {
F (−u) = −F (u)

∀u, F (u) · u ≤ 0

The above results are in good agreement with what is expected from the hydro-
dynamic drag force, traditionally refers as the pressure drag in porous media. The
demonstration rests on a set of calculations we are going to present now. The first
part of this proposition can be proved easily:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (−u) = ρ

(2πkB T/m)3/2

∫
n

S (y, n)

4ε (y)
ndn

∫
v

|v · n| (v · n)

×
[

exp

(
−m (rn (v) + u)2

2kB T

)
− exp

(
−m (v + u)2

2kB T

)]
dv

rn (v) =̂ v − 2 (v · n) n

And it only remains to make the change of variable v → −v in the integral. So let
us continue with the expression of F(u) · u:

⎧⎨
⎩F (u) · u = ρ

(2πkB T/m)3/2

∫
n

S (y, n)

4ε (y)
u · ndn

×
∫
v

|v · n| v · n

[
exp

(
−m (rn (v) − u)2

2kB T

)
− exp

(
−m (v − u)2

2kB T

)]
dv

As we first integrate in v when n has been chosen, it is convenient to work with
an orthonormal basis (s, t, n) in the phase space V. With such a choice, any
vector v can be decomposed as v = vss + vt t + vnn. From this it is very clear that
rn (v) · t = v · t = vt , rn (v) · s = v · s = vs , rn (v) · n = −v · n = −vn . Thus the
sign of F(u) · u is given by the sign of the function J(u, n) defined as:
⎧⎨
⎩J (u, n) =̂un

∫
vn

|vn| vn

[
exp

(
−m (vn + un)2

2kB T

)
− exp

(
−m (vn − un)2

2kB T

)]
dvn

(E.1)
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And it is a simple exercise to show that:

J (u, n) = −8u2
n

kB T

m
exp

(
− mu2

n

2kB T

)

+ 2

(
kB T

m
+ u2

n

)
un

−un∫
un

exp

(
− mv2

n

2kB T

)
dvn ≤ 0 (E.2)

APPENDIX F: COMPUTING AN APPROXIMATION

OF THE PRESSURE DRAG

This very important appendix is devoted to the demonstration of the following
result:

Proposition 6.

∀u, ‖u‖ �
√

kB T

m
, F (u) ≈ −

⎡
⎣ 4√

6π

ρσ

ε (y) m
µ (T )

∫
n

S (y, n) n ⊗ ndn

⎤
⎦ : u

Here again, the proof lies in the calculations. Since F(0) = 0, it is clear that:

F (u) =
u→0

M : u, M =̂ ∂F

∂u

∣∣∣∣
u=0

(F.1)

To compute the matrix M, let’s calculate:

Dui =̂ ∂

∂ui

⎡
⎣ ρ

(2πkB T/m)3/2

∫
n

S (y, n)

2ε (y)
ndn

∫
v

|v · n| (v · n)

×
(

exp

(
−m (rn (v) − u)2

2kB T

)
− exp

(
−m (v − u)2

2kB T

))
dv

]∣∣∣∣∣
u=0

(F.2)

Knowing that:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂ui

[
exp

(
−m (v − u)2

2kB T

)]∣∣∣∣∣
u=0

= mvi

kB T
exp

(
−m (v)2

2kB T

)

∂

∂ui

[
exp

(
−m (rn (v) − u)2

2kB T

)]∣∣∣∣∣
u=0

= m (rn (v))i

kB T
exp

(
−m (rn (v))2

2kB T

)

(F.3)
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We get:

Dui =
⎡
⎣ ρ

(2πkB T/m)3/2

∫
n

S (y, n)

2ε (y)
ndn

×
∫
v

m |v · n| (v · n)

kB T
((rn (v))i − vi ) exp

(
− mv2

2kB T

)
dv

⎤
⎦ (F.4)

But we can remark that (rn (v))i − vi = (rn (v) − v) · ei = −2 (v · n) n · ei =
−2 (v · n) ni so:

Dui =
⎡
⎣− ρ

(2πkB T/m)3/2

∫
n

S (y, n)

ε (y)
nni dn

×
∫
v

m |v · n| (v · n)2

kB T
exp

(
− mv2

2kB T

)
dv

⎤
⎦ (F.5)

But we have: ∫
v

m |v · n| (v · n)2

kB T
exp

(
− mv2

2kB T

)
dv

= m

kB T

2πkB T

m
2

+∞∫
0

v3
n exp

(
− mv2

n

2kB T

)
dvn (F.6)

where
+∞∫
0

v3
n exp

(
− mv2

n

2kB T

)
dvn = 2 k2

B T 2

m2 and we finally obtain:

M =
⎡
⎣−

√
8

π

ρ

ε (y)

√
kB T

m

∫
n

S (y, n) n ⊗ ndn

⎤
⎦

= −
√

8

3π

ρσ

ε (y) m

√
3mkB T

σ

∫
n

S (y, n) n ⊗ ndn (F.7)

If one then introduces the gas dynamical viscosity µ (T ) = √
3mkB T /σ he recov-

ers Proposition 1. It only remains now to explain why the approximation given by
Proposition 1 is correct for ‖u‖ <<

√
kB T/m. Indeed this is linked to the expan-

sion of the force F(u) in power series of u. Since ∀u, F (−u) = −F (u), the odd
terms appear alone in the expansion of F(u). But clearly, any odd partial derivative
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of F in 0 reads as:

∂2p+1F

∂u2p+1

∣∣∣∣
u=0

= c

√
kB T

m

(
kB T

m

)p

N (F.8)

where c is some constant and N is a tensor of order 2p + 1 of order 0 in u.
Formally:

‖F (u)‖
‖Mu‖ =

⎛
⎝1 +

∞∑
p=0

αp

(
m ‖u‖2

kB T

)p
⎞
⎠ (F.9)

In porous media, the fluid velocity is often very much smaller than a thermal
velocity so that the approximation claimed in Proposition 1 is largely satisfied.
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